
CNApy Guide
This manuscript (permalink) was automatically generated from cnapy-org/CNApy-guide@b122272 on 2024-10-08.

Authors

Sven Thiele
 0000-0002-5812-6963 · sthiele

Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems

Magdeburg

Axel von Kamp
· axelvonkamp
Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems

Magdeburg

Pavlos Stephanos Bekiaris
 0000-0002-3047-4253 · Paulocracy · Paulocracy2

Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems

Magdeburg

Philipp Schneider
· VonAlphaBisZulu
Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems

Magdeburg

Introduction

Welcome to CNApy’s user manual!

CNApy [Paper] is a Python-based graphical user interface for a) many common methods of Constraint-
Based Reconstruction and Analysis (COBRA) with stoichiometric metabolic models, b) the visualization
of COBRA calculation results as interactive and editable metabolic maps (including Escher maps
[GitHub][Paper]) and c) the creation and editing of metabolic models, including its reactions,
metabolites and genes. For model loading and export, CNApy supports the widely used SBML
standard format [Site][Paper].

Supported COBRA methods (partly provided by cobrapy [GitHub][Paper]) include:

Flux Balance Analysis (FBA) [Review]
Flux Variability Analysis (FVA) [Paper]
Yield optimization (based on linear-fractional programming) [Paper]
Phase plane analyses (can include �ux and/or yield optimizations)
Making measured in vivo �ux scenarios stoichiometrically feasible, optionally also by altering a
biomass reaction [Paper]
Elementary Flux Modes (EFM) [Review]
Thermodynamic methods based on OptMDFpathway [Paper]
Many advanced strain design algorithms such as OptKnock [Paper], RobustKnock [Paper],
OptCouple [Paper] and advanced Minimal Cut Sets [Paper] through its StrainDesign [GitHub]
[Paper] integration

https://cnapy-org.github.io/CNApy-guide/v/b122272ebfda67409ca850438dff1fee923d40eb/
https://github.com/cnapy-org/CNApy-guide/tree/b122272ebfda67409ca850438dff1fee923d40eb
https://orcid.org/0000-0002-5812-6963
https://github.com/sthiele
https://github.com/axelvonkamp
https://orcid.org/0000-0002-3047-4253
https://github.com/Paulocracy
https://twitter.com/Paulocracy2
https://github.com/VonAlphaBisZulu
https://doi.org/10.1093/bioinformatics/btab828
https://escher.github.io/#/
https://doi.org/10.1371/journal.pcbi.1004321
https://sbml.org/
https://www.embopress.org/doi/abs/10.15252/msb.20199110
https://github.com/opencobra/cobrapy
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1016/j.ymben.2018.02.001
https://academic.oup.com/bioinformatics/article/39/10/btad600/7284109
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/biot.201200269
https://doi.org/10.1371/journal.pcbi.1006492
https://doi.org/10.1002/bit.10803
https://doi.org/10.1093/bioinformatics/btp704
https://doi.org/10.1016/j.mec.2019.e00087
https://doi.org/10.1371/journal.pcbi.1008110
https://github.com/klamt-lab/straindesign
https://doi.org/10.1093/bioinformatics/btac632

We appreciate any comments or suggestions for improvements and we are greatly interested in your
feedback! If you have questions, suggestions or bug reports regarding CNApy, you can use either of
the CNApy GitHub issues, the CNApy GitHub discussions or the CNApy Gitter chat room.

Thank you for using CNApy!

Installation

CNApy main program

There are 4 alternative ways to install CNApy:

1. The easiest way for any user to install CNApy is by downloading its installer, which is provided for
Windows, Linux and MacOS, see Using CNApy installer for more.

2. If you already have installed Python 3.10 (no other version) on your system, you can install CNApy
simply through pip install cnapy in your console. Afterwards, you can start CNApy’s GUI by
running either cnapy or, if this doesn’t work, python -m cnapy where “python” must call your
Python 3.10 installation.

3. If you already use conda or mamba (for mamba, just change the “conda” command to “mamba”),
you can create a CNApy environment named cnapy-1.2.2 as follows: 1) Run conda create --
name cnapy-1.2.2 python=3.10 pip openjdk -c conda-forge , 2) run conda activate
cnapy-1.2.2 , 3) run pip install cnapy . Then, you can start CNApy in the cnapy-1.2.2 conda
environment by running either cnapy or, if this doesn’t work, python -m cnapy . Note that the
cnapy conda package is currently not being updated due to licensing uncertainties.

4. If you want to develop CNApy, follow the instruction for the cloning and setup of the CNApy
repository using git and conda or mamba in section Setup the CNApy development environment.

Note: After CNApy’s installation, it is recommended to download the CNApy example projects
(including interactive maps of models such as ECC2, iML1515 and many more) by starting CNApy and
clicking on “Download CNApy example projects…” in the “Projects” menu entry or by following the �rst
start-up instructions.

Installing additional solvers (optional)

CNApy itself is already packaged and installed with the open source linear programming solver GLPK
which is fast enough for simple calculations with small models and which is not restricted in the
possible number of variables.

For strain design and thermodyanmic calculations, you can also use the free and open-source solver
SCIP which is much faster than GLPK but still often much slower than IBM CPLEX and Gurobi (see next
paragraph). You can install SCIP by following the instructions on its website.

In addition, CNApy comes pre-packaged with the Community editions of the much faster commercial
solvers IBM CPLEX and Gurobi. These community editions can only run with models up to 1000
variables. In order to use one of these solvers with models which contain more variables, the full
versions of either two of these solvers have to be installed and connected to CNApy. You can obtain
these full versions from CPLEX’s and Gurobi’s web sites, respectively. In order to help you with the
installation of the full versions, CNApy contains a wizard which explains the process in detail and
which takes over some of the neccessary tasks. You can �nd these wizards under the “Con�g” menu
entry. Click on the wizard menu entry, and follow the wizard’s detailed instructions.

https://github.com/cnapy-org/CNApy/issues
https://github.com/cnapy-org/CNApy/discussions
https://gitter.im/cnapy-org/community
https://github.com/cnapy-org/CNApy#using-cnapy-installer
https://anaconda.org/cnapy/cnapy
https://github.com/cnapy-org/CNApy#setup-the-cnapy-development-environment
https://github.com/cnapy-org/CNApy-projects
https://www.nature.com/articles/srep39647
https://www.nature.com/articles/nbt.3956
https://www.gnu.org/software/glpk/
https://www.scipopt.org/
https://www.scipopt.org/index.php#download
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/

Con�guration

CNApy can be con�gured via the Con�g menu. The di�erent aspects of CNApy can be con�gured via
separate dialogs:

Con�gure CNApy

Figure 1: CNApy Con�guration dialog.

Here you can con�gure which colors CNApy should use to highlight reactions on the map or in the
reaction list.

In addition, you can activate the �ux analysis (e.g., �ux variabiliy analysis or FVA) cache in the selected
folder, where �ux analysis results of a speci�c model will be stored so that they can be quickly
reloaded without performing the �ux analysis again. The �ux analysis cache automatically works in a
way such that any change of the model also leads to a newly created �ux analysis cache �le.

Con�gure COBRApy

Figure 2: COBRApy con�guration dialog.

With this dialog selected global settings (class cobra.Configuration()) of the COBRApy toolbox
and selected parameters of the current model can be modi�ed. The global settings are saved, but the
parameters of the current model are not and will revert to the global default values when (re-)loading
a model.

Default solver (global)

Select which solver to use as global default from the dropdown list. COBRApy supports a variety of
solvers but only the ones which are installed for COBRApy on your system will be available on the list.
Also, di�erent solvers have di�erent capabilities so you should set a default that has all capabilities
that you require (e.g. glpk_exact cannot be used for MILPs).

Solver for current model

Here you can change the solver for the current model.

Number of processes for multiprocessing (global)

Number of processes run in parallel when Python multiprocessing is used, e.g. for FVA. Setting this to
1 disables multiprocessing.

Default tolerance (global)

This value is used to distinguish zero from non-zero elements for various purposes. In particular, this
value is propagated to the solver (see the COBRApy source code which solver parameters are
a�ected). Most solvers restrict the range of this value, so it must be between 1E-9 and 0.1 For details
where this value is used see the COBRApy documentation and source code.

IMPORTANT
Should be set to 1 on Windows because Python multiprocessing performs very poorly on this OS.

Tolerance for the current model

Here you can change the tolerance for the current model. You may enter an arbitrary value >= 0 here
but if it is not compatible with the current solver then “Apply Changes” can lead to an error message.

User interface overview

This section gives an introduction to the CNApy UI and its components and functions.

Figure 3: CNApy with an empty project.

This is an empty project on the right hand side we see the empty lists of reactions, metabolites and
genes. On the left we see the embedded Jupyter Console where one can interact programmatically
with the model and UI. We can create a new project by importing SBML models, editing the reactions
and adding graphical maps. We can also load one of the projects included in our projects repository.

Let’s go to Project in our menubar and open the ECC2comp.cna project.

Figure 4: CNApy with the ECC2comp project.

In this picture we see CNApy with the open ECC2comp project. On the right hand side (1) we see the
populated reactions and metabolites lists with the color coded current values and a form with
corresponding details for the selected reaction/metabolite.

The upper part of the reactions lists contains several columns. In the “Scenario” column the current
scenario values are shown and can also be edited via this column. The “Flux” column contains the
results of the last computation, e.g. the �uxes from a FBA. The “LB” and “UB” columns show the
lower/upper bounds of the reactions and after a FVA the results of this analysis will be displayed
there.

The reactions list contains buttons that lets us add/delete reactions to/from the model. Changing the
metabolite identi�er or other details in the metabolite/reaction form has an instant e�ect on the
corresponding reactions/metabolites in the model.

When selecting a metabolite in the metabolite tabs a list of reactions (and corresponding equations) in
which this metabolite participates is shown a the bottom. By double-clicking on a reaction or
metabolite ID one can switch to the respective object.

The console (2) now shows the output of some computations, and above the console we have a map
view (3) with a graphical representation of our network. On top (4) we have the menu bar which gives
us access to the various functionalities of CNApy and a Toolbar for quick access to often used
functions. Underneath, you can also see the search bar with which you can search for the IDs of
reactions, metabolites or genes, depending on which tab you have opened. The search results are
shown in the respective list (1). In addition to only searching for IDs, you can also look for annotations
(given in the annotations table of a single reaction, metabolite or gene) if you activate the respective
checkbox.

We can add new maps via the Map menu, and drag reactions from the reaction list onto the desired
position on the map.

Create a new project

In this section we explain how to create a new metabolic network project. We also have a video on
that topic https://youtu.be/bsNXZBmtyWw.

CNApy starts with an empty project. You can directly add new reactions via the reaction mask on the
right. by pressing the Add new reaction button.

Then, you can type the reaction formula into the Equation �eld. For example A + 2 B -> C .

The associated metabolites A , B and C are then automatically added to the model.

Changing metabolite identi�ers in the metabolite form instantly rewrites the reaction equation of the
associated reactions.

Since creating big models by adding single reactions is very cumbersome, CNApy also allows you to
create a new project from a pre-existing SBML �le. You �nd the action New project from SBML in the
Project menu.

After importing an SBML model, the reaction list is populated with all the reactions from the model.

You can add a map to the project by going to the Map menu and clicking add new map.

https://youtu.be/bsNXZBmtyWw

From the Map menu we can also change the background image of our map. Any SVG image can be
used as a background.

You can add multiple maps that highlight di�erent aspects of your model.

Reaction boxes can be put on the map by dragging over them from the reactions list.

You can adjust the box size with the keyboard shortcuts Ctrl + + and Ctrl + - . You can move
the reaction box to the desired position by dragging them on their handles. If you want to move all
reaction boxes together, press Ctrl while dragging. You can also set a speci�c (pixel-wise) position
by right-clicking on a reaction box and selecting “set box position…”.

Positioning a big number of reaction boxes can be tiresome. Therefore, CNApy allows you to load and
save reaction box positions via the Map menu. This facilitates reuse among similar projects.

The size of the background image can be adjusted with the shortcuts Ctrl + Shift + + and Ctrl
+ Shift + - .

To save a project click Save Project as in the Project menu. It is important to add the .cna extension
to the �le name. This way your �les can be directly found by CNApy. .cna �les both include the
metabolic model as well as its associated maps.

Scenarios

In CNApy you can de�ne a scenario under which metabolic analyses like the FBA will be performed. In
its most basic form, a scenario is a set of �ux bounds for a set of reactions. A scenario �ux can �x the
�ux of a reaction or set a lower and upper bound for the �ux. Furthermore, a scenario can contain its
own objective function and it is possible to add reactions as well as constraints over the reaction
�uxes to a model.

Scenario �uxes

The scenario �uxes of regular model reactions can be edited via the reaction boxes on the map or the
Scenario column of the reaction list. Accepted values are either a single �oat like 1.5 or a pair of
�oats like -10, 1.2 . A single �oat �xes the �ux of the reaction to this value (1.5) while a pair sets
the lower �ux bound of the reaction to the �rst value (-10) and the upper �ux bound to the second
value (1.2). Note that in a scenario you can use values outside the de�ned lower/upper bound of a
reaction. In such a case the scenario will supersede the reaction bounds which allows temporary
modi�cation of the bounds without the need to change the model.

Figure 5: Reaction box with scenario value.

Reactions boxes with scenario �ux are marked by the scenario color and a green frame. The frame
turns yellow, if the scenario �ux lies outside the reaction bounds of the model.

To remove a scenario �ux, simply delete the scenario value in the reaction box or “Scenario” column
of the reaction list.

The Scenario tab

Figure 6: Scenario tab with settings for isobutanol production.

Scenario objective

A scenario objective can be de�ned in the Scenario tab. There it is also possible to select whether the
scenario objective or the model objective is to be used (e.g. in FBA).

Scenario reactions

Scenario reactions can be added via the scenario tab. All metabolites from the model can be used
when entering a reaction equation. If you use a metabolite that is not part of the model it will
automatically be added to the model whenever the scenario is applied (e.g. in FBA). Scenario reactions
are intended as a means for introducing a few reactions that are necessary for a scenario’s function

without having to modify the model. Note that is not possible to set further properties of scenario
reactions (e.g. a gene rule) or metabolites (e.g. a formula). If this is required then you need to add the
respective reaction or metabolite to the model itself.

Scenario constraints

These are linear (in-)equality constraints over the reaction �uxes in the network (model as well as
scenario reactions). Such a constraint can for instance be used to express a minimal product yield that
is required in the scenario.

Scenario �les and history

You can save and load scenarios as *.scen �les via the Scenario menu or the toolbar. If a scenario
�le has been loaded its name is shown in the toolbar. The �ux bounds of a scenario can be set as the
default scenario of your project. This can be done via set current scenario as default scenario in the
Scenario menu. The project must then be saved, and the next time you open the project the scenario
is already set.

CNApy implements an edit history for the scenario �uxes and with the tool buttons you can
undo/redo your changes. Note that the edit history is for scenario �uxes only, scenario reactions and
constraints can only be added/removed via the Scenario tab. You can also import all the values that
are currently in the reaction boxes into the scenario (can be useful for applying a MCS), and you can
change the model’s reaction bounds to the current scenario �ux values.

Analysis functions

Flux balance analysis (FBA)

Optimizes the value of the current objective function and shows a �ux distribution that realizes this
optimum. The objective function is a linear function over the reaction rates in the network, its
coe�cients can be modi�ed in the reaction dialogs. To display the current objective function you can
choose Show optimization function from the Analysis menu. The current objective value is shown in
the console as well as the status bar at the bottom of the main window. Note that the �ux distribution
calculated by FBA is usually not unique.

Auto FBA

This is a checkable option which switches the “Auto FBA” mode on or o�. In “Auto FBA” mode a FBA is
automatically performed when a scenario is changed or when a reaction property that potentially
in�uences the FBA result is changed.

Parsimonious FBA (pFBA)

In parsimonious FBA �rst the objective function optimized and then with this optimum as additional
constraint the sum of the �uxes in the network is minimized. This has the advantage that redundant
internal cyclic �uxes are suppressed and that a lot of reactions will have zero �ux which makes the
solution easier to understand.

Flux variability analysis (FVA)

In FVA the maximal/minimal rate of each reaction is calculated. This gives the possible �ux range for
each reaction.

Make scenario feasible

A scenario is infeasible if the given �uxes in this scenario are incompatible with each other. An
example would be a �ux of a product that is higher than the substrate �ux multiplied by the maximal
product yield. Such a situation could for instance arise due to measurement errors if the given �uxes
come from experimental measurements.

With “Make scenario feasible” the given �uxes in the scenario and/or the biomass composition are
adjusted to make the �uxes consistent. This basically relies on minimzing the sum of deviations from
the given �uxes and/or deviations from the stoichiometric coe�cients the biomass reaction. There is
one main setting that controls this minimization: One can choose whether the deviations are linear or
quadratic terms, resulting in a linear program (LP) or quadratic program (QP) respectively (the latter
requires a QP-capable solver like CPLEX or Gurobi).

Figure 7: Make scenario feasible dialog.

Allow corrections to given �uxes using the following weights

If this option is activated, adjustments of the given �uxes are allowed. Here you can set the
(reciprocal) weights with which the �ux deviations enter the objective function: They can either all be
equal, relative to their absolute �ux values (i.e. larger �uxes are more likely to be changed when
resolving infeasibility), or taken from a speci�ed �eld in the reaction annotation. In the last case,
where a reaction has no entry in the speci�ed annotation �eld, the default weight is used. The default
weight/scale factor also scales all �ux deviation weights and can thus be used to adjust the relative

importance between �ux corrections and biomass adjustments in the minimization. Concretely,
lowering the scale factor here means that �ux deviations become more expensive than biomass
adjustments.

Allow adjustment of the biomass reaction

If this option is activated the biomass composition may be changed during minimization. To use this
option it is required to selecet a biomass reaction and this reaction must have a �xed �ux in the
current scenario. There are two major ways in which the biomass reaction can be modi�ed: The
biomass composition may be allowed to change and/or the amount of growth-associated
maintenance (GAM) may vary.

Select adjustable biomass constituents

Here a table is shown with the components of the biomass reactions as well as their stoichiometries
and formulas. In the �rst column of this table you can (de-)select the components whose
stoichiometries may be allowed to change. Note that you can only select components that have a
formula so that their molecular weights can be calculated. These are required to set up a constraint
which ensures that the overall biomass weight remains constant. You can also specify the maximal
relative coe�cient change [%] and whether the change should be calculated in mmol or gram.

Allow adjustment of growth-associated ATP maintenance (GAM)

If GAM is integrated in the currently selected biomass reaction this option can be used to activate the
adjustment of GAM. For this you need to specify a list of metabolites of an ATP hydrolysis reaction
together with the amount of GAM that has been set in the model. The GAM amount can either be
given as a number or you can specify a metabolite of the ATP hydrolysis reaction (ADP should work in
most situations) whose coe�cient from the biomass reaction is then used as GAM amount. If all the
above parameters are set, GAM will be removed from the biomass reaction during minimzation and
considered separately. Lastly, you can set the maximal amount of GAM change together with a weight
for this change in the overall minimization.

Compute

After optimization, the current scenario is modi�ed so that it contains the calculated consistent �uxes
and the necessary changes are shown on the console. If any adjustment of the biomass reaction
occured then the modi�ed biomass reaction is also shown on the console and it is added to the
current scenario (see Scenario tab) if the “Add modi�ed biomass reaction to scenario” was activated.
The biomass and GAM adjustment results are also displayed in the dialog window. You can perform
the calculation repeatedly with di�erent settings while the dialog is open without the need to go back
in the scenario history. You can reset the original scenario �uxes via the scenario history, but if a
modi�ed biomass reaction was added to the scenario you need to remove this via the Scenario tab.

Note that only reactions with scenario �uxes �xed to values unequal to zero enter the optimization.
Reactions which have a zero �ux set in the scenario will be considered removed from the network.

Known issue: The solvers are currently accessed through the optlang interface. Setting up the
quadratic ojective for the QP via this interface incurs a signi�cant overhead which increases with the
number of �uxes set in the scenario. This means that the method as a whole can become quite slow
in case more than a few dozen �uxes were set despite the fact that solving the QP itself is ususally
quite fast.

Show elemental balances

Computes the elemental balances over 1) the boundary reactions with a given scenario �ux 2) all
boundary reactions with a computed �ux.

If a biomass reaction is currently selected it is also included in the calculation. The results are then
displayed on the console. Note that this function only gives correct results if all metabolites included
in the reactions have correct formulas.

Elementary modes (EFM)

EFM can be calculated via efmtool which is automatically installed with CNApy. After calculation a
navigation panel appears to acces the results.

Options

When reactions are marked with 0 �ux in a scenario and the option “consider 0 in current scenario as
o�” is activated then only the subset of EFM/EFV is calculated in which these reactions do not
participate

Computational strain design

Minimal cut sets

Minimal cut sets (MCS) can be calculated in CNApy using the dual method. After calculation a
navigation panel appears to acces the results.

https://csb.ethz.ch/tools/software/efmtool.html

Figure 8: Minimal cut sets computation dialog.

Target and Desired region(s)

For the dual method one or more target regions must be de�ned which describe the network
behaviour that is to be suppressed. In addition, one or more desired regions may be de�ned which
describe the network behaviour that is to be preserved. Each target/desired region is de�ned by a set
of linear equality constraints over the reaction rates in the network. All target and desired regions
must be initially feasible or an error will be raised. Also make sure that 0 is not included in any target
or desired region (0 as target cannot be suppressed and 0 as desired is always ful�lled).

Note that all non-default reaction bounds (as de�ned by cobra.Con�guration().bounds) are
automatically added to all target and desired regions before MCS computation.

Current solver

MCS can be calculated via optlang using the currently active MILP solver. Not all variants and solvers
allow for the same options so these will partly be disabled depending on the chosen solver.

Max. solutions

Maximal number of MCS to calculate.

Max. size

Only calculate MCS which consists of up to this number of cuts.

Time limit

Do not run the search for longer than this limit. It is strongly recommended to use this parameter
because MCS computation can take very long especially when searching for smallest MCS.

MCS search

MCS can be enumerated iteratively, either the smallest �rst (least number of cuts) or any MCS (up to
the number of cuts given by max. size). With the latter option new MCS are found more quickly but
may not be the smallest.

With CPLEX or Gurobi as solver, MCS can also be enumerated by cardinality, i.e. all MCS of
successively increasing size (up to max. size) are computed. In addition, with these solvers a
continuous search mode is possible which is similar to the any MCS method but usually much faster.

Exclude boundary reactions as cuts

Do not allow knock-out of boundary reactions (reactions that cross the system boundary,
e.g. exchange reactions).

Consider constraints given by scenario

Take reaction bounds set by the current scenario into account for all target and desired regions.

Compute strain designs

Opens a dialog which serves as front-end of the StrainDesign package for MILP-based strain design
computation which supports MCS, MCS with nested optimization, OptKnock, RobustKnock and
OptCouple, GPR-rule integration, gene and reaction knockouts and additions as well as regulatory
interventions. A detailed description can be found in its documentation.

EFM/MCS Navigation and analysis

After the computation of EFM or MCS a navigation panel appears below the map. With this you can
browse through the results, select a subset of the modes/MCS and show some statistics. There is also
a button for saving the results and one to clear them and close the navigation panel.

https://github.com/klamt-lab/straindesign
https://straindesign.readthedocs.io/en/latest/

Figure 9: Mode/MCS Navigation Panel.

Select…

In this text �eld you can enter a comma-separated list of reaction IDs. After pressing “Enter” on the
keyboard the subset of modes/MCS is shown in which all speci�ed reactions occur. If you prepend a
reaction ID with an exclamation mark (e.g. !R1) this means that the speci�ed reaction must not
participate in selected the modes/MCS. To revert the selection click on the clear button embedded in
the text �eld.

Reaction participation

Calculate the relative participation of each reaction in the currently selected modes/MCS. The results
are shown in the reaction boxes and the “Flux” column of the reaction list.

Size histogram

Calculate the pathway lengths/number of reactions of the currently selected modes/MCS. The result is
shown as a size historam in the integrated Jupyter console.

Flux optimization

Launches a dialog in which you can enter a linear expression (over the �uxes) that can then be
maximized or minimized. The result is then displayed on the map(s) and the reaction list. The �ux
values of the current scenario are taken into during the optimization.

Yield optimization

Launches a dialog in which you can enter two linear expressions (over the �uxes), which serve as
numerator/denominator of a linear-fractional program which is then maximized or minimized. A
typical application would be the maximization of a product yield: When the exchange �uxes for
ethanol and glucose are EX_etoh and EX_glc then maximizing EX_etoh/-EX_glc gives the maximal
ethanol yield on glucose. For this to work correctly, there must be no �ux vector in the network where
the denominator becomes zero and the nominator is non-zero. The result is then displayed on the
map(s) and the reaction list. The �ux values of the current scenario are taken into during the
optimization.

Plot �ux space

Launches a dialog in which you can con�gure a plot that shows the projection of the solution space in
2D or 3D where the axes can be �ux expressions or yield expressions. In the simplest case one can for
example plot the growth rate against the substrate uptake rate. The �ux values of the current
scenario are taken into account during the calculations.

OptMDFpathway

Launches a dialog with which you can start OptMDFpathway, a mixed-integer linear program which
allows one to �nd - with a given metabolic network, linear constraints (such as a minimal growth rate),
metabolite concentration ranges and Gibbs free energies of reactions (ΔG’°) - a pathway with the
highest possible max-min driving force (MDF, in kJ/mol). If the MDF is negative, one knows that, at
least as deduced by the given thermodynamic data (metabolite concentration ranges and Gibbs free

https://doi.org/10.1371/journal.pcbi.1006492

energies), there is no thermodynamically feasible solution. If the MDF is positive, one knows that there
is a thermodynamically feasible solution.

In order to set-up a CNApy model for OptMDFpathway (or any of the following thermodynamics-using
methods), you have to provide metabolite concentration ranges as well as reaction ΔG’° values as
mentioned below.

Once this is set up, you can run OptMDFpathway either at the optimal value of the model’s or
scenario’s objective (which is calculated in advance without thermodynamic constraints) by activating
the checkbox, or without regarding the objective value.

Thermodynamic FBA

This thermodynamic FBA is derived from OptMDFpathway (see above) and requires a minimal MDF
that must be at least reached and for which a steady-state solution is searched for. The main
di�erence to OptMDFPathway is that the given steady-state solution does not have to be at the
OptMDF, but just at any MDF between the given minimal MDF and the OptMDF, which allows for more
possible solutions. E.g., if you set a small positive minimal MDF of, e.g., 0.0001 kJ/mol, you essentially
perform an FBA where thermodynamic feasibility is ensured. Again, if you activate the checkbox, you
can perform this calculation at the optimal objective value which is calculate in advance.

Note that, just like with normal �ux balance analysis and OptMDFpathway, the resulting �ux solution
does not have to be unique.

Thermodynamic bottleneck analysis

Each thermodynamic solution is restricted by at least one thermodynamic bottleneck, i.e., there is at
least one reactions whose ΔG’° poses a limit on the OptMDF with the given metabolite concentration
ranges. In order to �nd ways to solve these bottlenecks, it may be interesting to �nd them.

Furthermore, with a given pre-calculated set of ΔG’° values and concentration ranges, a metabolic
model seems to be thermodynamically infeasible (i.e., OptMDF < 0 kJ/mol) at a biologically typical
situation such as high growth rates. This problem may arise from some extreme ΔG’° values which are
erroneously calculated so that the resulting reactions become thermodynamic bottlenecks.

Hence, in order to identify thermodynamic bottlenecks, CNApy provides a thermodynamic bottleneck
analysis. It is a mixed-integer linear problem (MILP) which identi�es a minimal set of reactions whose
ΔG’° has to be disregarded (i.e., their ΔG’° becomes -∞) such that a user-given minimal OptMDF (e.g., a
positive one so that thermodynamic feasibility is possible) can be reached. This minimal list of a�ected
thermodynamic bottlenecks is then printed to the console below the map for further study.

Loading metabolite concentration ranges

In order for any thermodynamic method of CNApy to work, every metabolite of the model needs a
minimal (Cmin) and maximal (Cmax) concentration which is given in M (mol/l). A typical standard Cmin
is 1e-6 M, a typical Cmax 0.02 M, except of protons (H+), which typically get a Cmin and Cmax of 1 M
so that their concentration does not have an e�ect on the MDF as H+ is typically already accounted for
in the ΔG’° calculation.

There are 3 ways to load metabolite concentration ranges into your model:

1. You can manually add a “Cmin” and “Cmax” annotation (as keys) to each of your model’s
metabolites, with the respective concentration as value.

2. You can create and then load an Excel XLSX in the following example form (i.e., the �rst line has the
given captions and the following lines correspond to these captions):

Metabolite ID Cmin Cmax

DEFAULT 1e-6 0.02

h_c 1.0 1.0

h_p 1.0 1.0

This table actually encodes the mentioned typical standard concentration ranges: 1 M for protons
(here given by their BiGG IDs in the cytoplasm (_c) and periplasm (_p)) and 1e-6 M to 0.02 M for all
other metabolties as “DEFAULT” is a special table keyword with which all metabolites for which no
concentration ranges are given (here, all metabolites except of h_c and h_p) get these default
concentration ranges. Note that the metabolite IDs given must correspond exactly to the one in your
model, including lower and upper case.

CNApy can load this Excel XLSX through “Analysis->Load concentration ranges->As Excel XLSX”.

3. As an alternative to the Excel XLSX, you can also give the concentration range data in the form of a
JSON �le, which can be seen as a text �le which can contain a typical Python dictionary. For
example, with CNApy’s OptMDFpathway implementation, the Excel XLSX’s content would look like
the following as a JSON �le:

CNApy can load this JSON through “Analysis->Load concentration ranges->As JSON”.

Loading reaction ΔG’° values

In order for any thermodynamic method of CNApy to work, at least one reaction (the more, the
better) needs an associated Gibbs free energy value (ΔG’°) in kJ/mol. One convenient way to calculate
ΔG’° for a reaction in silico is the eQuiilibrator web-site. If you have experience with programming in
Python, you can also automate the task using the eQuilibrator API. Typically, the eQuilibrator does not
only return a ΔG’° but also an uncertainty in the calculation of the value.

{
 "DEFAULT": {
 "min": 1e-6,
 "max": 0.02
 },
 "h_c": {
 "min": 1.0,
 "max": 1.0
 },
 "h_p": {
 "min": 1.0,
 "max": 1.0
 }
}

https://en.wikipedia.org/wiki/JSON
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://equilibrator.weizmann.ac.il/
https://gitlab.com/equilibrator/equilibrator-api

Once you have calculated or measured ΔG’° values, you can include them into a CNApy project in one
of three ways:

1. You can manually add a “dG0” (for the ΔG’° value) and “dG0_uncertainty” annotation (as keys) to
each of your model’s metabolites, with the respective concentration as value.

2. You can create and then load an Excel XLSX in the following example form (i.e., the �rst line has the
given captions and the following lines correspond to these captions):

Reaction ID dG’° [kJ/mol] dG’° uncertainty [kJ/mol]

GAPD 0.28 0.0003

PGM -4.12 -0.0005

Here, we set a small positive ΔG’° for the reaction GAPD and a larger negative one for PGM. Note that
the reaction IDs given must correspond exactly to the one in your model, including lower and upper
case. The sign of the ΔG’° uncertainty does not matter as only its absolute value is used.

3. As an alternative to the Excel XLSX, you can also give the ΔG’° range data in the form of a JSON �le,
which can be seen as a text �le which can contain a typical Python dictionary. For example, with
CNApy’s OptMDFpathway implementation, the shown Excel XLSX’s content would look like the
following as a JSON �le:

Show model stats

Shows the stoichiometric matrix and basic model properties on the console. In particular, the degrees
of freedom of the stoichiometric matrix and the number of conservation relations are calculated for
this.

Net conversion of the external metabolites

Shows the conversion of external metabolites of the current �ux distribution. Because there are no
external metabolites in COBRApy models this conversion is derived from the rates through the
boundary �uxes.

Compute in/out �uxes at a metabolite

If a �ux distribution has been calculated (e.g. by FBA) this function shows the magnitude of all �uxes
going in/coming out of a speci�ed metabolite. The reaction �uxes are displayed as stacked bar graphs

{
 "GAPD": {
 "dG0": 0.28,
 "uncertainty": 0.0003
 },
 "PGM": {
 "dG0": -4.12,
 "uncertainty": -0.0005
 }
}

https://en.wikipedia.org/wiki/JSON
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

on the console. You can either call this function from the Analysis menu and specify a metabolite or
right-click on a metabolite in the list and call the function from the context menu.

Clipboard calculator

Figure 10: Clipboard calculator.

The clipboard calculator allows you to perform arithmetic operations with the values stored in the
clipboard, the current reaction rates or a �xed value that you can enter in this dialog. The result of the
operation replaces the current �ux values.

Programming CNApy

Under Construction

accessing the COBRApy Model
accessing scenario and computed values
accessing the CNApy UI

References

